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ABSTRACT 
 
Electricity markets that have pioneered the transition from a regulated monopolistic system to a decentralized open market 
have faced many challenges. As markets evolve, there is a need for new modeling approaches that simulate how electric 
power markets could evolve over time and how participants in these markets may act and react to the changing economic, 
financial, and regulatory environment in which they operate. To gain insights into the decentralized electric marketplace, 
Argonne National Laboratory developed the Electricity Market Complex Adaptive Systems (EMCAS) model. The EMCAS 
model is an electronic laboratory that probes the possible effects of market rules and conditions by simulating the strategic 
behavior of participants. It uses agent-based modeling techniques that represent market participants who operate with their 
own objectives and apply their own decision rules. The market participants with decision-making capabilities that are 
represented in EMCAS, called agents, include generation companies, demand aggregators, consumers, and independent 
system operators. The success of an agent is a function not only of its own decisions and actions, but also of the decisions and 
actions of other market participants. Since minimal amounts of local information are shared among participants, agent 
decisions in EMCAS are made without either perfect knowledge or certainty. Using the complex adaptive systems approach, 
agents in EMCAS learn from their previous experiences and modify their behavior. That is, as the simulation progresses, 
agents adapt their strategies on the basis of the success or failure of their previous actions. This paper presents an overview of 
the EMCAS model structure. 
 
INTRODUCTION 
 
Electric utility systems around the world are changing from 
regulated, vertically integrated monopoly structures to open 
markets intended to promote competition among suppliers 
and provide consumers with a choice. The unbundling of 
the generation, transmission, and distribution functions that 
is part of this restructuring creates opportunities for many 
new participants, or agents, to enter the market. 
Restructuring can introduce new types of business models, 
including power marketers and load aggregators. Each 
market participant has its own, unique business strategy, 
risk preference, and decision model. Decentralized decision 
making is one of the key features of the new deregulated 

markets. The goal is a fully functioning market with a 
sufficient number of participants to generate competition. 
Economic theory holds that competition will lead to 
increased economic efficiency, with the presumption that 
this efficiency will result in higher quality services and 
products at lower retail prices. 
 
Many of the modeling tools for power systems analysis that 
were developed over the last two decades are based on the 
implicit assumption of a centralized decision-making 
process. Although these tools are very detailed and complex 
and will continue to provide many useful insights into 
power systems operation (Conzelmann et al., 1999; 
Koritarov et al., 1999; Harza, 2001), they are limited in 
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their ability to adequately analyze the market forces 
prevalent in the new markets. Driven by these observations, 
Argonne National Laboratory’s Center for Energy, 
Environmental, and Economic Systems Analysis 
(CEEESA) has started to develop a new deregulated market 
analysis tool, the Electricity Market Complex Adaptive 
Systems (EMCAS) model. Unlike conventional electric 
systems models, the EMCAS agent-based modeling 
techniques do not postulate a single decision maker with a 
single objective for the entire system. Rather, agents are 
allowed to establish their own objectives and apply their 
own decision rules. The complex adaptive systems (CAS) 
modeling approach simulates agents that learn from their 
previous experiences and change their behavior when future 
opportunities arise. That is, as the simulation progresses, 
agents can adapt their strategies on the basis of the success 
or failure of previous efforts. Genetic algorithms are used to 
provide a learning capability for certain agents. With its 
agent-based approach, EMCAS is specifically designed to 
analyze multiagent markets and allow testing of regulatory 
structures before they are applied to real systems; that is, 
EMCAS can be used as an electronic laboratory or “e-
laboratory.” 
 
This paper first provides some brief background 
information on agent-based modeling. It then introduces 
EMCAS as a market simulation tool for the restructured 
electric markets. The paper describes the general 
methodology, including a description of market zones, 
locational market pricing, congestion charges, bilateral 
contracts, and pool and ancillary services markets, and then 
discusses agent risk preferences and the bid/market price 
expectations for individual agent learning. The paper closes 
with a discussion of current applications of EMCAS.  
 
OVERVIEW OF THE AGENT-BASED 
MODELING CONCEPT 
 
The complex interactions and interdependencies among 
electricity market participants are much like those studied 
in game theory (Picker, 1997). However, the strategies used 
by many electricity participants are often too complex to be 
conveniently modeled by standard game theoretic 
techniques. In particular, the ability of market participants 
to repeatedly probe markets and rapidly adapt their 
strategies adds additional complexity. 
 
Computational social science offers appealing extensions to 
traditional game theory. Computational social science 
involves the use of agent-based models (ABMs) to study 
complex social systems (Epstein and Axtell, 1996). An 
ABM consists of a set of agents and a framework for 
simulating their decisions and interactions. ABMs are 
related to a variety of other simulation techniques, 
including discrete event simulation and distributed artificial 
intelligence or multiagent systems (Law and Kelton, 2000; 
Pritsker, 1986). Although many traits are shared, ABMs are 

differentiated from these approaches by their focus on 
achieving “clarity through simplicity,” as opposed to 
deprecating “simplicity in favor of inferential and 
communicative depth and verisimilitude” (Sallach and 
Macal, 2001). 
 
An agent is a software representation of a decision-making 
unit. Agents are self-directed objects with specific traits. 
Agents typically exhibit bounded rationality, meaning that 
they make decisions by using limited internal decision rules 
that depend only on imperfect local information. Emergent 
behavior is a key feature of ABMs. Emergent behavior 
occurs when the behavior of a system is more complicated 
than the simple sum of the behavior of its components 
(Bonabeau et al., 1999). 
 
A wide variety of ABM implementation approaches exist. 
Live simulation where people play the role of individual 
agents is an approach that has been used successfully by 
economists studying complex market behavior. General-
purpose tools such as spreadsheets, mathematics packages, 
or traditional programming languages can also be used. 
However, special-purpose tools such as Swarm, the 
Recursive Agent Simulation Toolkit, StarLogo, and Ascape 
are among the most widely used options (Burkhart et al., 
2000; Collier and Sallach, 2001). 
 
Several electricity market ABMs have been constructed, 
including those created by Bower and Bunn (2000), Petrov 
and Sheblé (2000), and North (2000a, 2000b, 2001). These 
models have hinted at the potential of ABMs to act as 
e-laboratories suitable for repeated experimentation under 
controlled conditions. 
 
THE EMCAS CONCEPT 
 
EMCAS is an electricity market model related to several 
earlier models (VanKuiken et al., 1994; Veselka et al., 
1994). The underlying structure of EMCAS is that of a time 
continuum ranging from hours to decades. Modeling over 
this range of time scales is necessary to understand the 
complex operation of electricity marketplaces. 
 
EMCAS includes a large number of different agents to 
model the full range of time scales (see Figure 1), including 
generation companies (GenCos), transmission companies 
(TransCos), distribution companies (DisCos), independent 
system operators (ISOs) or regional transmission 
organizations (RTOs), consumers, and regulators. The 
focus of agent rules in EMCAS varies to match the time 
continuum. Over longer time scales, human economic 
decisions dominate. Over shorter time scales, physical laws 
dominate. Many EMCAS agents are relatively complex or 
“thick,” compared with typical agents. EMCAS agents are 
highly specialized to perform diverse tasks ranging from 
acting as generation companies to modeling transmission 
lines. To support specialization, EMCAS agents include 

 



large numbers of highly specific rules. EMCAS agent 
strategies are highly programmable. Users can easily define 
new strategies to be used for EMCAS agents and then 
examine the marketplace consequences of these strategies.  
 
EMCAS MARKETS 
 
The EMCAS modeling system operates at six time scales or 
decision levels that include an hourly dispatch as well as 
several forward markets, such as day-ahead, week-ahead, 
month-ahead, year-ahead, and multiyear ( ). At each 
decision level, generation company agents make decisions 
regarding the operation of the generating resources they 
manage and formulate marketing strategies. Dependent on 
user-defined rules, different types of markets are available 
to players at each time scale. The types of markets available 
and the specific rules under which each operates will 
influence decisions made by market participants. 

Figure 2

 

 
Figure 2:  EMCAS Time Scales 

Currently, EMCAS simulates three types of markets that 
include bilateral contract, pool, and ancillary services 
( ). Generally, bilateral contracts are agreements 
between a single generation company agent and a single 
demand agent. These contracts have time scales that range 

from hours to several years. In the pool market, EMCAS 
agents submit buy and sell bids to a power exchange or 
another entity that acts as a central clearinghouse. In some 
markets this function is conducted by the ISO. On the basis 
of bid prices, transmission constraints, and energy security 
considerations, the clearinghouse determines which bids are 
accepted and rejected and calculates the price of electricity. 
Pool markets are typically conducted at the day-ahead and 
hour-ahead time scales. Ancillary service markets, such as 
spinning and non-spinning reserves, automatic generation 
control (AGC), and replacement reserves, maintain electric 
quality and reliability. The ancillary services markets are 
usually conducted at the day-ahead and hour-ahead time 
scales in most markets. 

Figure 3

 

 
Figure 3:  EMCAS Markets 

 
Figure 1:  EMCAS Structure and Agents 

EMCAS BILATERAL CONTRACT 
MARKETS 
 
EMCAS simulates bilateral contracts among generation 
company and demand agents through a series of requests 
for proposals (RFPs) that are initiated by the demand 
agents. A demand agent formulates an RFP for capacity and 
energy on the basis of the anticipated needs of its customers 
and its risk tolerance for exposure to pool market price 
volatility. If a demand agent chooses to participate in the 
bilateral market, one or more RFPs are sent to select 
generation company agents. As shown in , 
generation company agents analyze RFPs, formulate 
responses, and send these responses to demand company 
agents. The response includes prices for all or some portion 
of the requested capacity and energy. Demand agents 
evaluate the responses that they receive and either accept or 
reject the offers. On the basis of the bilateral agreements 
forged among market players and lessons learned from 
previous bid rounds, both demand and generation company 
agents revise their marketing strategies for the next round. 
The user controls the number of bidding rounds simulated 
by EMCAS.  

Figure 4
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Figure 4:  Sequence of Events for Modeling 
Bilateral Agreements 

Generation company responses to an RFP are based largely 
on projected pool market and bilateral contract prices (i.e., a 
demand agent’s willingness to pay). These price projections 
are made independently by each generation company agent 
and are a function of historical information that acts as a 
collection of past experiences. A generation company then 
weighs the costs and benefits (i.e., net profits) of entering 
into bilateral contracts versus selling its energy production 
on the pool and ancillary services markets. Anticipated net 
profits are based on projected prices in each of the markets 
and the costs associated with power production. EMCAS 
production costs are a function of variable operating and 
maintenance (O&M) costs, fuel costs, heat rate curves that 
are represented as fuel consumption for blocks of 
production, and unit startup and shutdown costs. In addition 
to considering net profits, the generation company agent 
factors other components into its final pricing response to 
an RFP. These factors, such as risk of rejection and power 
plant costs, are reflected in the corporate utility and 
influence the demand agent’s RFP price response. 
Therefore, price responses may be either higher or lower 
than the generation company’s anticipated willingness to 
pay. 

As described in more detail below, an agent’s behavior is a 
function of its risk preference. For example, a generation 
company agent that is risk-averse may choose to forgo 
some potential profits on the pool market and sell its 
capability and production via bilateral agreements with a 
guaranteed stream of income. On the other hand, a purely 
profit-maximizing generation company may choose to enter 
solely into pool and ancillary services markets despite high 
market price volatility if it foresees that it can potentially 
make more money. 

 
A generation company’s power plant capabilities and 
previous commitments may limit its ability to respond to all 
RFPs; that is, it cannot bid to sell more power plant 
capability than it can deliver. Power plant capability 
limitations may also require that the generation company 
offers to deliver energy that is less than the amount 
specified in the RFP. Therefore, generation company agents 
must prioritize RFPs and respond to those RFPs that 
maximize their corporate utility.  

 
In EMCAS, demand agents formulate two types of RFPs: 
energy deliveries that are constant over all hours of the 
contract term and energy deliveries that vary over time. The 
first RFP type, referred to as a base-load contract, is 
typically less expensive because a significant portion of the 
energy is delivered during off-peak load periods. The 
demand agent’s request is based on projections of its 
customers’ future energy requirements. These projections 
are made independently by each demand agent and are 
subject to uncertainty. This uncertainty stems from such 
factors as weather forecast errors, inaccurate projections of 
the type and number of future customers, and unpredictable 
variability in customers’ electricity consumption patterns. 
To reflect this uncertainty, demand agents make several 
forecasts that span a reasonable range of future customer 
demands. Each possible future is assigned a probability 
level such that the sum of the probability of all futures 
equals 1.0. If the demand agent’s corporate utility is heavily 
weighted toward ensuring that all of its customers’ demands 
are reliably satisfied, the agent tends to forecast relatively 
high demand levels; for example, demands that are only 
exceeded 5 percent of the time. Decisions regarding the 
formulation of an RFP made by demand agents also reflect 
anticipated future prices of short-term markets and 
associated volatility.  

 
A demand agent will accept offers (if any) that it 
determines will maximize its corporate utility. This 
determination is based on an analysis of the offers it 
receives and projected pool market prices. Trade-offs 
among prices and other corporate goals must be made. 
Differences in corporate objectives among demand agents 
can result in very different behaviors by agents that have 
similar customer profiles. For example, a demand agent that 
has a low tolerance for price variability may decide to serve 
most or all of its projected loads via long-term firm 
contracts. Another demand agent in a similar situation may 
decide to buy power on the pool market if it anticipates that 
prices will be lower. 
 
In EMCAS, an agent learns about market behavior and the 
actions of other agents. This learning process is based on an 
exploration process. Agents explore various marketing and 
bidding strategies and observe the results of its actions. 
Once a strategy is found that performs well, it is exercised 
and fine-tuned as subtle changes occur in the marketplace. 
When more dramatic market changes take place and a 
strategy begins to fail, an agent more frequently explores 
new strategies in an attempt to adapt to the dynamic and  

 



evolving supply and demand forces in the marketplace. 
Even when a strategy continues to perform well, agents 
periodically explore and evaluate other strategies in their 
search for one that performs better. Through this process, 
agents engage in a price discovery process and learn how 
they may potentially influence the market through their own 
actions to increase their corporate utility.  

Some agents may strive to exploit the physical limitations 
of the power system and the market rules under which they 
operate as a means to increase profit. For example, under 
the LMP market rule, if a generation company learns that 
under certain conditions it can frequently influence market 
prices, then it may decide to increase its bid prices. 
However, this higher bid price will increase the risk that it 
will be rejected. A company that has learned that it has little 
influence over the market or is risk-averse may decide not 
to increase bid prices. 

 
EMCAS POOL MARKETS 
 

 In the pool market, EMCAS agents submit buy and sell bids 
to a power exchange or other entity that acts as a central 
clearinghouse. In some markets, this clearinghouse function 
is conducted by the ISO. Pool markets are typically 
conducted at the day-ahead and hour-ahead time scales. As 
shown in Figure 5, the clearinghouse is also responsible for 
posting information that is available to all agents. This 
information includes unit outages, historical pool clearing 
prices and system-level loads, weather forecasts, and load 
projections. Each agent in the market submits bids 
independently, without any information regarding the bids 
placed by its competitors. Instead, agents make bidding 
decisions on the basis of bulletin board information, the 
historical behavior of the market under different conditions, 
and market trends. In the current version of EMCAS, there 
is no collusion among agents.  

In the day-ahead pool market, generation companies’ 
bidding strategies are formulated for the entire day – not for 
individual hours. EMCAS generation companies use their 
projection of hourly LMPs, technical generation minimums, 
production costs, shutdown and startup costs, and minimum 
downtimes to formulate their bidding strategies. Companies 
may be willing to lose money during some hours of the day 
in order to make profits during other hours or avoid startup 
and shutdown costs.  
 
On the basis of bid prices, transmission constraints, and 
energy security considerations, the clearinghouse 
determines which bids are accepted and rejected and 
computes the LMPs. The clearinghouse then separately 
notifies each company if its bids were accepted or rejected. 
On the basis of clearinghouse decisions, generation 
companies develop unit commitment schedules and 
formulate plans for the ancillary services markets. 

 
EMCAS has two pool market options. The first is the 
locational marginal price (LMP) option in which all agents 
get paid the marginal bid to serve loads at a specific 
location. The LMP is paid to all generation companies that 
sell power (accepted bid) at a specific location regardless of 
the agent’s bid price. The second pool market option is 
referred to as “Pay-as-Bid” in which each generation 
company agent that is accepted gets paid the price that it 
bids. In this type of market, generation companies may be 
paid different amounts for providing the same service at the 
same location. 

 
EMCAS MARKETS: ANCILLARY 
SERVICES MARKETS 
 
EMCAS models three ancillary services markets after the 
pool market closes. Spinning reserve markets are simulated 
first, followed by the AGC and replacement reserves 
markets. The amount of these services that is purchased by 
the ISO is a function of system reliability and security 
parameters that are entered into EMCAS by the user.   
 

Bulletin
BoardISO

Bulletin
BoardISO

 
Figure 5:  Pool Market Structure 

The ISO selects ancillary service bids based solely on price 
– not on location. The lowest-priced bids are accepted such 
that all ancillary services requirements are fulfilled. Total 
transfer capabilities on transmission lines include security 
constraints. Therefore, it is assumed that the transmission 
system can reliably accommodate ancillary services 
functions under all but the most severe situations.  
 
Spinning reserve services are called upon by EMCAS when 
scheduled generation cannot meet load because of an 
unplanned event, such as a generator failure or a line 
outage. One or more units on spinning reserve duty are 
ordered to generate power to fill the supply shortfall. 
Spinning units that were previously called into generation 
service are eventually put back into a spin state, and, if 
required, generation from replacement reserve units fulfills 
the shortfalls.  

 



When a transmission line reaches its limits but it would 
otherwise be economical to transfer power over it, 
congestion occurs and LMPs differ as a function of 
location. That is, the marginal accepted bid to supply a 
location differs from another because the transmission 
system does not have enough capability to transport the less 
expensive power to all locations in the grid. Therefore, 
expensive bids are sometimes accepted in order to meet 
electricity demands in some locations while some less 
expensive bids are rejected. 

Since ancillary services markets are cleared last, generation 
company agents must anticipate the costs, benefits, and 
risks associated with these markets in their overall 
marketing strategy. If all of a generation agent’s resources 
are committed in other markets, then the opportunity to 
participate in ancillary services markets is lost. On the other 
hand, if generating capabilities are reserved for these 
markets and ancillary services bids are not accepted, 
potential profits that could have been made in other markets 
are lost. When making spinning and ancillary services 
marketing decisions, generation company agents must also 
consider the probability that they will be called upon and 
the profits or losses associated with generating power from 
the unit.  

 
As shown in , LMPs can vary significantly among 
nodes in the network (i.e., buses). As a simplification, 
EMCAS uses market zones instead of all buses in the power 
grid. These zones aggregate all market activities in a given 
geographical area to a single point. Market zones are 
assumed to have no intra-zonal congestion, and their 
geographical boundaries are based on bus-level load flow 
model simulations, such as the ones provided by the 
Argonne Load Flow (ALF) model or PowerWorld™. If 
agent behavior results in significant intra-zonal congestion, 
it is necessary to disaggregate a market zone into two or 
more uncongested zones. 

Figure 7
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Figure 7:  Illustration of LMPs (Source: Overbye, 
2002) 

 
EMCAS has several user-specified settlement options for 
paying generation companies. Settlement rules impact a 
generation company’s risk and hence company decisions. 
For example, if spinning reserve units are placed into 
service when LMPs are significantly lower than production 
costs, the generation company will lose money if the 
settlement rule states that the company will receive 
payments based on the LMP. The generation company 
agent has a much lower risk if there is a settlement rule that 
pays the higher of the LMP or marginal production cost 

 
Locational price differences in EMCAS are typically 
collected through transmission congestion charges. In 
EMCAS, these congestion charges can be based on energy 
delivery points whereby some demand agents pay a higher 
rate than others or congestion charges can be spread evenly 
among all demand agents (socialized). 

 
EMCAS MARKETS: LOCATIONAL 
MARGINAL PRICES 
 
In EMCAS, the market clearinghouse or ISO determines 
the price of energy at all grid withdrawal and injection 
points. Under an LMP market rule where there is no 
transmission congestion, there is a single clearing price for 
all buyers and sellers. This is determined by the supply (i.e., 
price bids) and demand intersection point as illustrated in 

. Essentially, power is sold up to the point where 
buyers are willing to pay for it. Because both supply and 
demand bids in EMCAS are specified in discrete quantities 
or blocks, the curves depicted on the figure are in the form 
of step functions. 

Figure 6
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Figure 6:  Market Price and Demand 

 

 
AGENT RISK CHARACTERIZATION 
 
In EMCAS, an agent’s risk preference is broadly classified 
into risk-averse, risk-neutral, and risk-seeking. The risk 
preference is modeled by using a von Neumann-
Morgenstern expected multiobjective utility function. Each 
agent can have a set of objectives (e.g., maximizing profits, 
maximizing market share, maximizing capacity utilization, 

 



and minimizing un-served energy). Different types of 
agents have different types of objectives. For example, 
generation company agents have different objectives than 
RTO agents. An individual agent’s objectives may conflict 
with each other in that the achievement of one objective 
may negate the achievement of other objectives. For 
example, if a generation company agent tries to maximize 
the capacity factor of a unit at times of low market clearing 
prices, then profits may be compromised. Each objective of 
an agent is represented by a minimum expected value 
(Xmin), a maximum expected value (Xmax), and a risk 
preference (RP). A scaling factor (k) for each objective is 
used to compute the overall expected utility (OEU) as the 
sum of all single-objective expected utilities (EU) weighted 
by k. 
 
A single-objective increasing utility function is defined by 
equations (1) and (2). 
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Similarly, a single-objective decreasing utility function is 
defined by equations (3) and (4). 
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Following is an example to illustrate these concepts. 
Consider a demand agent purchasing power either through 
bilateral contracts or from the day-ahead pool market. One 
of the objectives of the agent is to maximize its profits. The 
utility increases for increasing values of profit. For a given 
profit X, the utility of a risk-averse agent is higher than that 
of a risk-seeking agent ( ). Hence, under similar 
circumstances, the risk-averse agent may not change its 
strategy of buying energy from bilateral or pool markets, 
while a risk-seeking agent may not be satisfied with the low 
utility and may try to increase its utility by shifting the 
energy purchases from bilateral markets to the pool market.  

Figure 8
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Figure 8:  Example of Increasing Utility Function 
for Risk-Averse, Risk-Neutral, and Risk-Seeking 
Agents 

 
Another objective of the demand agent could be minimizing 
the unserved energy to its customers. That objective could 
be achieved either by buying energy through bilateral 
contracts or by bidding into the pool market at a higher 
price. The utility increases for a decreasing value of this 
objective. For a given value of unserved energy X, the risk-
seeking agent has a higher utility than a risk-averse agent 
( ). Hence, under similar circumstances, a risk-
averse agent may either enter into bilateral contracts or bid 
at a higher price into the pool market, while a risk-seeking 
agent may just do the opposite. 

Figure 9
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Figure 9:  Example of Decreasing Utility Function 
for Risk-Averse, Risk-Neutral, and Risk-Seeking 
Agents 
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AGENT LEARNING 
 
Agents involved in either the bilateral or pool markets 
develop price expectations to support their internal decision 
models. These expectations are based on a combination of 
public information (available to all market participants) and 

 

 



private information (available only to the specific agent). 
The differing private information available to the agents 
results in agents developing different price expectations. 
Initially, the agents have prior price expectations based only 
on public information (e.g., information on pool prices, 
system load, and reserve margin). We assume that agents 
do not have differing skills for forecasting the day-ahead 
market, the ISO forecast for load and reserves is taken as 
given. However, agents do have differing historical 
information regarding the acceptance and rejection of their 
own bids. On the basis of results from the EMCAS 
simulation, the agents update their price expectations using 
private information on bids that are accepted and rejected. 
This private information on bids is even more important for 
the bilateral market, because the results of the bilateral 
transactions are not public information, only the agents that 
execute a contract know the terms.  
 
Consider the pool market first. The expected pool price may 
follow the simple relationship 
 

RMcLbaP Pool ++=  (5) 
 
Where L and RM are the day-ahead forecast load and 
reserve margin, respectively. This framework can apply to 
each hour of the day and marketing zone. In the absence of 
congestion, we know that a bid is accepted if PPool – Bid > 0 
and rejected if PPool – Bid < 0. If we subtract the bid from 
both sides of the simple price expectation model then we 
can interpret this as an index function for a binary variable 
model for acceptance and rejection based on the agent’s 
private data on accepted and rejected bids and public data 
on forecast system characteristics. To generalize the 

specification, we estimate a quadratic response for the bid 
price as well, so the model is  
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This binary variable index function may be used in either 
the probit model, where the underlying probability 
distribution is standard normal, or the logit function, where 
the underlying probability is logistic. 
 
The bilateral market is similarly motivated, but the 
reservation price of the buyer is never observed. In the 
bilateral market, the price expectations of the seller may be 
specific to a demand agent, if there is enough experience, or 
represent all bilateral transactions.  
 
EMCAS APPLICATION 
 
In its most recent application, EMCAS is used to simulate 
the Midwest power markets for the state of Illinois. The 
focus of the analysis is whether the existing transmission 
system can support a competitive market to keep prices in 
check and allow for new market participants to compete for 
market share. EMCAS will also be used to investigate 
whether conditions can occur that will enable a company to 
exercise market power in some regions, thereby creating 
undue price pressures. 
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